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Outline

In this talk, which extends our previous research presented for our last meeting in the
LANMR 2023, we will show how to handle permutative conversions in natural deduction
through an embedding into a typed lambda calculus with sums for strong normalization
results.

While this result is a well-known aspect of the Curry-Howard correspondence, our
approach revisits and reconstructs the proof techniques presented by Joachimski &
Matthes (2003).

Building on this foundation, we will focus on incorporating permutation cases in Nm and
introducing the π-rule to handle the conversion cases.

Through this reconstruction, we have two primary goals:

1 In our effort to achieve a "computer-checkable formalization and proof-theoretic
analysis of normalization proofs" (Joachimski & Matthes, 2003, p. 59), we address
specific gaps that were overlooked in the original proof by Joachimski & Matthes
(2003)

2 To refine our understanding of the Curry-Howard correspondence by integrating
insights from the practice of normalizing proofs in natural deduction.

Both goals reflect two contrasting perspectives on mathematical practice, described as the
romantic attitude versus the cool attitude (Barendregt & Wiedijk, 2005).
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Outline

The romantic attitude concerns the traditional approach of practicing mathematics where
the acts of defining, proving, and calculating are kept on a "humane scale". Romantic
proofs are informal yet rigorous.

The cool attitude, in contrast, advocates for active support from proof assistants in those
same activities, recognizing their need in daily practice to handle the growing complexity
of mathematical results. Cool proofs are mechanizable proofs.
All in all, we aim to provide a proof that reconciles the "algebraic reasoning" embodied by
the lambda calculus in normalization results intended to be verified by a computer with
the "diagrammatic reasoning" of natural deduction, where the analysis of normal proofs is
conducted by manipulating proof-trees.

We achieve this by giving a "diagrammatic" interpretation to the "algebraic" reasoning
provided by Joachimski & Matthes (2003).
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Curry-Howard at work: ND-λ⊃,∨

The most straightforward way to grasp Curry-Howard at work is by introducing the
well-known system ND-λ⊃,∨.

This comprises minimal logic with implication and disjunction, but into which we have
embedded proof-objects from the simply-typed lambda calculus augmented with
injections and case analysis: ND-λ⊃,∨ = Nm + λ⊃,∨ − terms.

x :A

Γ, [x :A]

...
r :B ⊃ I , x

λx .r :A ⊃ B

Γ

...
r :A ⊃ B

∆

...
s :A ⊃ E

rs :B

Γ

...
r :A ∨I1inlr :A ∨ B

Γ

...
s :B ∨I2inrs :A ∨ B

Γ

...
r :A ∨ B

∆, [x :A]

...
s :C

Θ, [y :B]

...
t :C ∨E , x , y

case(r , x .s, y .t) :C

r,s,t ::= x| λx .r | inlr | inrs | rs | case(r , x .s, y .t)
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Normalization in ND

Normalization in ND involves simplifying proofs so that they avoid making détours.

We recall that a détour in a derivation consists of applying an I − rule followed by the

E − rule of the same operator in succession.
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Normalization in ND

Unlike modus ponens, the conclusion of case analysis introduces an arbitrary formula

that is neither part of the major premise nor part of the hypotheses. Consequently, the

sub-formula property for derivations is no longer guaranteed.

To address this issue, permutation convertibilities are added to ND, which help uncover

hidden détours that could be separated by the application of the case analysis rule.
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Normalization in ND: The Permutations

Adding disjunction to Nm creates a new kind of cut, known as the permutation.

Permutative convertions are needed to recover the sub-formula property of Nm when
dealing with case analysis as in the following proof-situation:

Which we would like to transform into:
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Normalization in ND:π − reductions & β − reductions
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Normalization in ND:π − reductions & β − reductions

To have a single diagram for permutations as in J.Y.Girard, and encode in type theory the
behavior of rules of ND for more complex situations as happens when normalizing proofs,
we introduce informally the notion of elimination in which we distinguish two cases:

Eliminations in its diagrammatic form, we have:
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Normalization in ND:π − reductions & β − reductions

So, finally, in a single diagram we can accommodate both instances of permutations as in
J.Y. Girard (1994):

Despite the apparent similarity between the two types of diagrams, our approach is
distinct. Rather than relying on metanotation to interpret the labels that decorate
proof-trees, we have internalized the meaning of these labels by assigning formal rules from
the typed lambda calculus. These rules, in turn, guide the construction of the proof-trees.
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Normalization in ND:π − reductions & β − reductions

As we are interested in proof schemata that can be able to show the process of
proof-searching of either a β − redex or a π − redex , we introduce the notion of
elimination chains.

Elimination chains are multiple applications of modus ponens, or arbitrary applications
modus pones or case analysis:

This helps us construct, perhaps, more intricate proof schemata which are better suited to
handle more complex situations during normalization.

Where we have a first, top-left most π − redex in an E − chain.
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Détour & Permutation Proof-Search: The
typology of proofs

As seen, with the addition of case analysis to Nm, we need to incorporate permutations
into the conversions used to transform a non-normal proof into a normal one. However,
this requires us to revise our criterion for what constitutes a normal proof in ND.

The diagrammatic schemata for handling the conversions in ND can guide us on what to
do when handling a redundancy, but they do not reveal how to search for them within a
proof. So, how do we perform a proof search for détours and permutations?

From the structure of ND, we can abstract what we call a typology of proofs.

This typology arises from observing that the three rules of ND give rise to three forms of
proof, which we use to establish an inductive argument about proofs that normalize:

1 H-proofs, that is proofs that end with the rule of hypothesis: x .
2 I-proofs, proofs that end with an introduction rule: λx .r , inlr and inrs.
3 E-proofs, proofs that end with an elimination rule: rs and case(r , x .s, y .t).

The typology of proofs will allow us to recursively organize détour and permutation
proof-search by analyzing how the major premise of an elimination rule was constructed.
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Détour & Permutation Proof-Search: The
typology of proofs

Applying this insight into how convertibilities are formed in ND and the λ− calculus, we
observe two things:

1 There is nothing in the rules of ND or the standard grammar of the λ− calculus to
prevent us from combining their rules and creating détours or permutations
arbitrarily, except the conversions schemata for β − reduction or π − reduction.

2 Convertibilities arise from a sanctioned application of an E − rule. Détours, for
example, result from a pathological use of the rules modus ponens or case analysis,
where the major premise of an E − rule is constructed using an I − rule.
Permutations occur when the major premise of an E − rule is constructed using
case analysis.
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Détour & Permutation Proof-Search: The
typology of proofs

For instance, having pq or case(r , x .p, y .q) does not allow us to distinguish between
legitimate and illegitimate instances of modus ponens or case analysis. To address this
issue, we rely on our typology for the analysis of E − proofs to specify occurrences of the
rule applied according to the form of the term p in pq or r in case(r , x .s, y .t) :

1 If p or r are an H-proof, we have an assumptive modus ponens or an assumptive
case analysis

2 If p or r are an I-proof, we have a redundant modus ponens or a redundant case
analysis

3 If p or r are an E-proof, then we reiterate the process by analyzing how the major
premise of that E − proof was obtained. This construction gives us what we call
elimination chains, which are nested applications of E − rules, possibly empty, of
modus ponens or case analysis. E − chains cannot grow indefinitely, and the
analysis continues until we eventually hit a détour or a permutation.
Détour & permutation proof-search terminates.

The intuition behind this maneuver is that by analyzing all possible applications and
reductions within the λ− calculus, we have all the necessary elements to fully describe the
set of well-formed and well-typed expressions of λ⊃,∨ that strongly normalize.
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Détour & Permutation Proof-Search: GPR

We refine our approach to analyzing E-proofs using the typology of proofs by introducing
a formal grammar that captures E-chains’ construction.

E-Chains Grammar

E ::= ⋆ | e⟨E⟩ M ::= ⋆ | (⋆s)⟨M⟩ e ::= ⋆s | case(⋆, y .s, y .t)

GPR Grammar

r , s, t ::= x | λx .r | inlr | inrs | E⟨(λx .r)s | M⟨x⟩s | case(M⟨x⟩, y .s, z.t) | E⟨case(inlr , x .p, y .q)⟩

| E⟨case(inrs, x .p, y .q)⟩ | E⟨e⟨case(M⟨x⟩, y .r , z.t)⟩⟩

This allows us to incorporate our distinction between assumptive and redundant
occurrences of modus ponens or case analysis within the application of respective rules,
which features in a new grammar for λ⊃,∨.

GPR stands for Global Proof Representation because the terms obtained through this
grammar are exhaustive with respect to the usual classification and help us achieve a finer
granularity in normalization results by introducing E-chains.
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Main Lemma
Previous GPR conditions, captured diagrammatically, translate algebraically into the rules
that describe the set of strongly normalizing terms: SN.

(SNVar )
x ∈ SN

r ∈ SN
(SNinl)inlr ∈ SN

s ∈ SN
(SNinr)inrs ∈ SN

M⟨x⟩ ∈ SN s ∈ SN t ∈ SN
(SNMcase )case(M⟨x⟩, y .s, z.t) ∈ SN

r ∈ SN
(SNλ)

λx .r ∈ SN

M⟨x⟩ ∈ SN s ∈ SN
(SNMmp)

M⟨x⟩s ∈ SN

E⟨p[x := r ]⟩ ∈ SN E⟨p⟩ ∈ SN r ∈ SN
(SNβ∨ l

)
E⟨case(inlr , x .p, y .q)⟩ ∈ SN

E⟨q[y := s]⟩ ∈ SN E⟨q⟩ ∈ SN s ∈ SN
(SNβ∨r )E⟨case(inrs, x .p, y .q)⟩ ∈ SN

E⟨r [x := s]⟩ ∈ SN s ∈ SN
(SNβ⊃)

E⟨(λx .r)s⟩ ∈ SN

E⟨case(M⟨x⟩, y .e⟨r⟩, z.e⟨s⟩)⟩ ∈ SN
(SNπ)

E⟨e⟨case(M⟨x⟩, y .r , z.s)⟩⟩ ∈ SN

Main Lemma

SN is closed under modus ponens, case analysis and substitution.
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Main Lemma: Proof

Main Lemma in its Original Version (Romantic):

If r , s, t ∈ SN then rs ∈ SN, case(r , x .s, y .t) ∈ SN, and r [x := s] ∈ SN. NB: All terms are
assumed to be typable.

Main Lemma in its Cool Version:

∀A ∀r (r ∈ SN ⇒ (∀∆∀B (∆ ⊢ r : A ⊃ B ⇒ ∀s (Γ ⊢ s : A ⇒ s ∈ SN ⇒ rs ∈ SN))))

∧∀B ∀C ∀Γ (A = B ∨ C ⇒ Γ ⊢ r : A ⇒ ∀D ∀∆∀x ∀s (∆, x : B ⊢ s : D ⇒ s ∈ SN ⇒

∀Σ∀y∀t (Σ, y : C ⊢ t : D ⇒ t ∈ SN ⇒ case(r , x .s, y .t) ∈ SN))

∧ ∀s (Γ ⊢ s : A ⇒ s ∈ SN ⇒ ∀∆∀c ∀x (∆, x : A ⊢ r : C ⇒ r [x := s] ∈ SN))

Proof: By simultaneous induction on the formula A and r ∈ SN.■

Moral: Mechanizing a mathematical proof is a challenging task.
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ND−λ⊃,∨ strongly normalizes

Theorem

If Γ ⊢ t : A then t ∈ SN

Proof: By induction on the derivability relation Γ ⊢ t : A

Basis: t = x , immediate since x ∈ SN by rule (SNVar ).

Inductive step : t = λx .r , immediate from the I.H (r ∈ SN) and rule (SNλ).
Inductive step : t = inlr , immediate from the I.H (r ∈ SN) and rule (SNinl).
Inductive step : t = inrs, immediate from the I.H (s ∈ SN) and rule (SNinr).
Inductive step: t = rs. Immediate from the I.H. (r , s ∈ SN) and the main lemma.
Inductive step: t = case(r , x .p, y .q). Immediate from the I.H. (r , p, q ∈ SN), and
the main lemma, which guarantees that SN is closed under modus ponens, case
analysis and substitution.■
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Final remarks

Our interest in this research has been to lay the foundation for a conciliatory proof.

This reconciliation involves adapting the formal rules of the lambda calculus, which is
amenable to mechanization, to the act of proving in natural deduction by supplementing
with diagrammatic constructions that guide our intuition in areas that are too abstract for
our imagination.

Our proposal addresses a gap between proof theory and the lambda calculus concerning
how normalization results have been approached through the Curry-Howard
correspondence without tipping the balance towards either side of the algebra/geometry
dichotomy.

Furthermore, it opens a new avenue in the formalization and mechanization of proofs by
contrasting and reconciling two formally equivalent systems but epistemologically very
diverse.
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¡Muchas gracias por su atención!
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