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INTRODUCTION: 
WHAT IS 
PROGRAM 
SYNTHESIS?

A longstanding problem in computer science, 

program synthesis is the task of generating a 

program that satisfies a given specification.



INTRODUCTION: 
WHAT IS 
PROGRAM 
SYNTHESIS?

The problem has been investigated since late 

1950’s. Some regard it as the “Church 

Problem” since Alonzo Church posed one of 

the earliest instances of the problem as a 

question: How to build a circuit from a 

mathematical formula?



WHAT DO WE 
KNOW?

There is a very well known system based on 

LLM (Large Language Models) solving the 

problem for a great amount of consults. 

However, it is known to be error-prone.

Besides machine learning, formal methods 

have been a strongly visited approach to the 

problem.



THE FORMAL 
APPROACH

Diverse authors thought of the problem as a 

question concerning automatic theorem 

proving systems.



THE PROBLEM 
WITH THE 
FORMAL 
APPROACH

Eventually, it was found that the ATP 

techniques were unable to express recursion.

Some authors were inclined to use proving 

methods based on recursion, sacrificing other 

desired properties.



THE 
WALDINGER-
MANNA 
APPROACH TO 
PROGRAM 
SYNTHESIS

It was the seminal paper A deductive approach 

to Program Synthesis of Richard Waldinger 

and Zohar Manna that introduces a formal 

framework without giving up recursion in 

proofs. 

The formal framework they present is a 

Gentzen-style deduction system.



THE 
WALDINGER-
MANNA 
APPROACH TO 
PROGRAM 
SYNTHESIS

Suppose we wish to develop a program such 

that, for a certain input x, the output is f(x).

E.g. our input is a nonempty list L and we want 

to find the maximum element, max(L). 



a b c d f g h i

head(L) tail(L)

L  =

head(L) > max(tail(L)) ?



Let us take the following formulas:

A1(x) ≡ islist(x)                A2(x) ≡ ¬( x = [ ] )                 

We will call them our assertions. For an x satisfying both properties, we want to 

find its maximum element. Take the formula 

v = max(L)

In order to find what the maximum of our input list is, first find a derivation of

∀x A1(x), ∀x A2(x) ⊢ ∃v v = max(L)



For any v: If v = max(x), then v ∈ x, which is equivalent to say that

v = head(x) or   v ∈ tail(x)

If v = head(x), ¬( tail(x) = [ ] ), and head(x) > max(tail(x)), then v = max(x).

If ¬( tail(x) = [ ] ), head(x) ≤ max(tail(x)) and v =  max(tail(x)), v = max(x).

Therefore, v = max(x) if and only if 

v = head(x) and ¬( tail(x) = [ ] ) and head(x) > max(tail(x))

or

v = max(tail(x)) and ¬( tail(x) = [ ] ) and head(x) ≤ max(tail(x)) 



Fix the goals

G1(x) ≡ ¬( tail(x) = [ ] ) and head(x) > max(tail(x))

G2(x) ≡ ¬( tail(x) = [ ] ) and head(x) ≤ max(tail(x))

and add the assertion

A3(x) ≡ ∃v  v = max(x)

Thus, the sequent we want to derive becomes 

∀x A1(x), ∀x A2(x), ∀x A3(x) ⊢ ∃x G1(x), ∃x G2(x)



The bottom of a proof-tree would look something like the following:

islist(L), ¬(L=[ ]), ∃v v=max(L) ⊢ ¬(tail(L)=[ ]) ∧ ( head(L)>max(tail(L)) ∨ head(L)≤max(tail(L)) )

A1(L), A2(L), A3(L) ⊢ G1(L), G2(L)        

A1(L), A2(L), A3(L) ⊢ ∃x G1(x), ∃x G2(x)        

∀x A1(x), ∀x A2(x), ∀x A3(x) ⊢ ∃x G1(x), ∃x G2(x)

_____________________________________________________

______________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________

_____________________________________________________

…

∀ Left

∃ Right

If head(L)≤max(tail(L)), in the upper sequent that formula is replaced by 

¬(tail(tail(L))=[ ]) ∧ ( head(tail(L))>max(tail(tail(L))) ∨ head(tail(L))≤max(tail(tail(L))) )

which is obtained by writing “tail(L)” instead of “L”.



• Only one of formulas G1(L) and G2(L) can be true, and it depends on what 

are the elements of the input list L. This will determine what term will be 

written instead of v in the assertion

∃v  v = max(L)

• We keep track of the candidate to be the maximum of the list. 

• Notice that it replicates the following algorithm on a nonempty list L:

Max(L):

if tail(L) != [ ]:

if head(L) > Max(tail(L)):

return head(L)

else 

return Max(tail(L))

else 

return head(L)



Start

List = L

tail(List)!=[]

and 

head(List) ≤ max(tail(List))

List = tail(List) 

tail(List)!=[]

and 

head(List) ≤ max(tail(List))

tail(List)==[]

or 

head(List) > max(tail(List))

tail(List)==[]

or 

head(List) > max(tail(List))

return head(List)



CONCLUSION: 
RESEARCH 
PROPOSAL

• How can we use modal logic in this 

methodology?

• Is it possible to describe the process of a 

computation with modal logic?

• What kind of specifications are possible to 

express with modal logic formulas?
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