
PROGRAM SYNTHESIS
THROUGH
GENTZEN CALCULUS OF
MODAL LOGICS
16TH LATIN AMERICAN WORKSHOP ON NEW METHODS OF REASONING

LANMR 2024, SEPTEMBER 7TH

RICARDO LÓPEZ | EVERARDO BÁRCENAS

INTRODUCTION:
WHAT IS
PROGRAM
SYNTHESIS?

A longstanding problem in computer science,

program synthesis is the task of generating a

program that satisfies a given specification.

INTRODUCTION:
WHAT IS
PROGRAM
SYNTHESIS?

The problem has been investigated since late

1950’s. Some regard it as the “Church

Problem” since Alonzo Church posed one of

the earliest instances of the problem as a

question: How to build a circuit from a

mathematical formula?

WHAT DO WE
KNOW?

There is a very well known system based on

LLM (Large Language Models) solving the

problem for a great amount of consults.

However, it is known to be error-prone.

Besides machine learning, formal methods

have been a strongly visited approach to the

problem.

THE FORMAL
APPROACH

Diverse authors thought of the problem as a

question concerning automatic theorem

proving systems.

THE PROBLEM
WITH THE
FORMAL
APPROACH

Eventually, it was found that the ATP

techniques were unable to express recursion.

Some authors were inclined to use proving

methods based on recursion, sacrificing other

desired properties.

THE
WALDINGER-
MANNA
APPROACH TO
PROGRAM
SYNTHESIS

It was the seminal paper A deductive approach

to Program Synthesis of Richard Waldinger

and Zohar Manna that introduces a formal

framework without giving up recursion in

proofs.

The formal framework they present is a

Gentzen-style deduction system.

THE
WALDINGER-
MANNA
APPROACH TO
PROGRAM
SYNTHESIS

Suppose we wish to develop a program such

that, for a certain input x, the output is f(x).

E.g. our input is a nonempty list L and we want

to find the maximum element, max(L).

a b c d f g h i

head(L) tail(L)

L =

head(L) > max(tail(L)) ?

Let us take the following formulas:

A1(x) ≡ islist(x) A2(x) ≡ ¬(x = [])

We will call them our assertions. For an x satisfying both properties, we want to

find its maximum element. Take the formula

v = max(L)

In order to find what the maximum of our input list is, first find a derivation of

∀x A1(x), ∀x A2(x) ⊢ ∃v v = max(L)

For any v: If v = max(x), then v ∈ x, which is equivalent to say that

v = head(x) or v ∈ tail(x)

If v = head(x), ¬(tail(x) = []), and head(x) > max(tail(x)), then v = max(x).

If ¬(tail(x) = []), head(x) ≤ max(tail(x)) and v = max(tail(x)), v = max(x).

Therefore, v = max(x) if and only if

v = head(x) and ¬(tail(x) = []) and head(x) > max(tail(x))

or

v = max(tail(x)) and ¬(tail(x) = []) and head(x) ≤ max(tail(x))

Fix the goals

G1(x) ≡ ¬(tail(x) = []) and head(x) > max(tail(x))

G2(x) ≡ ¬(tail(x) = []) and head(x) ≤ max(tail(x))

and add the assertion

A3(x) ≡ ∃v v = max(x)

Thus, the sequent we want to derive becomes

∀x A1(x), ∀x A2(x), ∀x A3(x) ⊢ ∃x G1(x), ∃x G2(x)

The bottom of a proof-tree would look something like the following:

islist(L), ¬(L=[]), ∃v v=max(L) ⊢ ¬(tail(L)=[]) ∧ (head(L)>max(tail(L)) ∨ head(L)≤max(tail(L)))

A1(L), A2(L), A3(L) ⊢ G1(L), G2(L)

A1(L), A2(L), A3(L) ⊢ ∃x G1(x), ∃x G2(x)

∀x A1(x), ∀x A2(x), ∀x A3(x) ⊢ ∃x G1(x), ∃x G2(x)

__

…

∀ Left

∃ Right

If head(L)≤max(tail(L)), in the upper sequent that formula is replaced by

¬(tail(tail(L))=[]) ∧ (head(tail(L))>max(tail(tail(L))) ∨ head(tail(L))≤max(tail(tail(L))))

which is obtained by writing “tail(L)” instead of “L”.

• Only one of formulas G1(L) and G2(L) can be true, and it depends on what

are the elements of the input list L. This will determine what term will be

written instead of v in the assertion

∃v v = max(L)

• We keep track of the candidate to be the maximum of the list.

• Notice that it replicates the following algorithm on a nonempty list L:

Max(L):

if tail(L) != []:

if head(L) > Max(tail(L)):

return head(L)

else

return Max(tail(L))

else

return head(L)

Start

List = L

tail(List)!=[]

and

head(List) ≤ max(tail(List))

List = tail(List)

tail(List)!=[]

and

head(List) ≤ max(tail(List))

tail(List)==[]

or

head(List) > max(tail(List))

tail(List)==[]

or

head(List) > max(tail(List))

return head(List)

CONCLUSION:
RESEARCH
PROPOSAL

• How can we use modal logic in this

methodology?

• Is it possible to describe the process of a

computation with modal logic?

• What kind of specifications are possible to

express with modal logic formulas?

THANK YOU!

rlv@ciencias.unam.mx

mailto:rlv@ciencias.unam.mx

