Pattern Models and Action Models are Incomparable in Update Expressivity

> Armando Castañeda Hans van Ditmarsch David A. Rosenblueth **Diego A. Velázquez**

(ロ) (部) (E) (E)

크

1. Context Dynamic-Network Models

Communication is performed in synchronous rounds Adversary

 A set of infinite sequences of communication graphs (Reflexive directed graphs)

Oblivious adversary

Any communication graph in a given set X may occur in any round

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We say that X is the adversary

1. Context Iterated Immediate Snapshot (IIS)

▶ IIS can be described as an oblivious dynamic-network model

Two processes

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

1. Context After first round

Dynamic Epistemic Logics (DEL)

Epistemic Logic augmented with update modalities

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dynamic Epistemic Logics (DEL)

Epistemic Logic augmented with update modalities

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Action Model Logic

Epistemic change is defined via events

Dynamic Epistemic Logics (DEL)

- Epistemic Logic augmented with update modalities
- Action Model Logic
 - Epistemic change is defined via events
 - Indistinguishability between events w.r.t. each agent

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What must be true for an event to occur?

Dynamic Epistemic Logics (DEL)

- Epistemic Logic augmented with update modalities
- Action Model Logic
 - Epistemic change is defined via events
 - Indistinguishability between events w.r.t. each agent

- What must be true for an event to occur?
- Pattern Model Logic
 - Designed for analyzing distributed systems

Dynamic Epistemic Logics (DEL)

- Epistemic Logic augmented with update modalities
- Action Model Logic
 - Epistemic change is defined via events
 - Indistinguishability between events w.r.t. each agent
 - What must be true for an event to occur?
- Pattern Model Logic
 - Designed for analyzing distributed systems
 - Who communicates with whom? (communication graph)

- full-information communication
- A graph precondition depends on the model

2. Action Models and Pattern Models Languages

Given a set of agents A and a set of propositions P,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\begin{array}{l} \blacktriangleright \ \mathcal{L}_D \\ \bullet \ \phi := p_a \mid \neg \phi \mid \phi \land \phi \mid D_B \phi \\ \bullet \ \mathcal{L}_{\otimes} \\ \bullet \ \phi := p_a \mid \neg \phi \mid \phi \land \phi \mid D_B \phi \mid [\mathsf{U}, \mathsf{e}] \phi \\ \bullet \ \mathcal{L}_{\odot} \\ \bullet \ \phi := p_a \mid \neg \phi \mid \phi \land \phi \mid D_B \phi \mid [\mathcal{P}, G] \phi \end{array}$$

2. Action Models and Pattern Models Action Model

- $\mathsf{U}=(\mathsf{E},\mathsf{R},\mathsf{Pre})$
 - E a set of events
 - $R: A \to \wp(\mathsf{E} \times \mathsf{E})$ (indistinguishability)
 - ▶ Pre : $\mathsf{E} \to \mathcal{L}_D$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$M' = (W', \sim', L') = M \otimes \mathsf{U}$$

$$W' = \{(w, \mathbf{e}) \in W \times \mathsf{E} \mid M, w \models \mathsf{Pre}(\mathbf{e})\}$$

$$\sim'_a = \{((w, \mathbf{e}), (w', \mathbf{e}')) \in W' \times W' \mid w \sim_a w' \land \mathbf{e} \mathsf{R}_a \mathbf{e}'\}$$

$$L'((w, \mathbf{e})) = L(w)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$M' = (W', \sim', L') = M \otimes \mathsf{U}$$

$$W' = \{(w, \mathsf{e}) \in W \times \mathsf{E} \mid \underline{M, w \models \mathsf{Pre}(\mathsf{e})} \}$$

$$\sim'_a = \{((w, \mathsf{e}), (w', \mathsf{e}')) \in W' \times W' \mid w \sim_a w' \land \mathsf{e} \mathsf{R}_a \mathsf{e}' \}$$

$$L'((w, \mathsf{e})) = L(w)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

. . .

$$\begin{aligned} M' &= (W', \sim', L') = M \otimes \mathsf{U} \\ \blacktriangleright & W' = \{(w, \mathsf{e}) \in W \times \mathsf{E} \mid M, w \models \mathsf{Pre}(\mathsf{e})\} \\ \vdash & \sim_a' = \{((w, \mathsf{e}), (w', \mathsf{e}')) \in W' \times W' \mid w \sim_a w' \land \mathsf{e} \mathsf{R}_a \mathsf{e}' \} \\ \vdash & L'((w, \mathsf{e})) = L(w) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$M' = (W', \sim', L') = M \otimes \mathsf{U}$$

$$W' = \{(w, \mathsf{e}) \in W \times \mathsf{E} \mid M, w \models \mathsf{Pre}(\mathsf{e})\}$$

$$\sim'_a = \{((w, \mathsf{e}), (w', \mathsf{e}')) \in W' \times W' \mid w \sim_a w' \land \mathsf{e} \mathsf{R}_a \mathsf{e}'\}$$

$$L'((w, \mathsf{e})) = L(w)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

2. Action Models and Pattern Models Pattern Model

 $\mathcal{P} = (\mathbf{G}, \mathit{Pre})$

 G a set of communication graphs

$$\blacktriangleright Pre: \mathbf{G} \to \mathcal{L}_D$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

$$M' = (W', \sim', L') = M \otimes \mathsf{U}$$

▶
$$W' = \{(w, G) \in W \times \mathbf{G} \mid M, w \models Pre(G) \}$$

▶ $\sim'_a = \{((w, G), (w', G')) \in W' \times W' \mid Ga = G'a \land w \sim_{Ga} w'\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$\blacktriangleright L'((w,G)) = L(w)$$

Ga in-neighborhood of a in G

$$\sim_B = \bigcap_{b \in B} \sim_b$$

$$M' = (W', \sim', L') = M \otimes \mathsf{U}$$

$$W' = \{(w, G) \in W \times \mathbf{G} \mid M, w \models Pre(G) \}$$

$$\sim'_a = \{((w, G), (w', G')) \in W' \times W' \mid Ga = G'a \land w \sim_{Ga} w'\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\blacktriangleright L'((w,G)) = L(w)$$

 ${\cal G}a$ in-neighborhood of a in ${\cal G}$

$$\sim_B = \bigcap_{b \in B} \sim_b$$

$$M' = (W', \sim', L') = M \otimes \mathsf{U}$$

$$\blacktriangleright W' = \{(w, G) \in W \times \mathbf{G} \mid M, w \models Pre(G)$$

$$\blacktriangleright \sim'_a = \{((w, G), (w', G')) \in W' \times W' \mid Ga = G'a \land w \sim_{Ga} w'\}$$

}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\blacktriangleright L'((w,G)) = L(w)$$

 ${\cal G}a$ in-neighborhood of a in ${\cal G}$

$$\sim_B = \bigcap_{b \in B} \sim_b$$

$$M' = (W', \sim', L') = M \otimes \mathsf{U}$$

$$\blacktriangleright W' = \{(w, G) \in W \times \mathbf{G} \mid M, w \models Pre(G)$$

$$\vdash \sim'_a = \{((w, G), (w', G')) \in W' \times W' \mid Ga = G'a \land w \sim_{Ga} w'\}$$

}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$\blacktriangleright L'((w,G)) = L(w)$$

 ${\cal G}a$ in-neighborhood of a in ${\cal G}$

$$\sim_B = \bigcap_{b \in B} \sim_b$$

2. Action Models and Pattern Models Semantics on epistemic models

$$\blacktriangleright M, w \models p_a \text{ iff } p_a \in L(w)$$

- $\blacktriangleright M, w \models \neg \phi \text{ iff } M, w \not\models \phi$
- $\blacktriangleright \ M,w\models\phi\wedge\psi \text{ iff }M,w\models\phi \text{ and }M,w\models\psi$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

•
$$M, w \models D_B \phi$$
 iff $M, v \models \phi$ for all $v \sim_B w$

2. Action Models and Pattern Models Semantics on epistemic models

- $\blacktriangleright \ M, w \models p_a \text{ iff } p_a \in L(w)$
- $\blacktriangleright M, w \models \neg \phi \text{ iff } M, w \not\models \phi$
- $\blacktriangleright \ M,w\models\phi\wedge\psi \text{ iff }M,w\models\phi \text{ and }M,w\models\psi$
- $M, w \models D_B \phi$ iff $M, v \models \phi$ for all $v \sim_B w$
- $\blacktriangleright M, w \models [\mathsf{U},\mathsf{e}]\phi \text{ iff } M, w \models \mathsf{Pre}(\mathsf{e}) \text{ implies } M \otimes \mathsf{U}, (w,\mathsf{e}) \models \phi$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

2. Action Models and Pattern Models Semantics on epistemic models

$$\blacktriangleright \ M, w \models p_a \text{ iff } p_a \in L(w)$$

- $\blacktriangleright M, w \models \neg \phi \text{ iff } M, w \not\models \phi$
- $\blacktriangleright \ M,w\models\phi\wedge\psi \text{ iff }M,w\models\phi \text{ and }M,w\models\psi$
- $M, w \models D_B \phi$ iff $M, v \models \phi$ for all $v \sim_B w$
- ► $M, w \models [\mathsf{U}, \mathsf{e}]\phi$ iff $M, w \models \mathsf{Pre}(\mathsf{e})$ implies $M \otimes \mathsf{U}, (w, \mathsf{e}) \models \phi$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $M, w \models [\mathcal{P}, G]\phi \text{ iff } M, w \models Pre(G) \text{ implies } M \odot \mathcal{P}, (w, G) \models \phi$

What questions do we want to answer?

What questions do we want to answer?

Given an action model U, is there a pattern model P with the same update effect as U?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

What questions do we want to answer?

- Given an action model U, is there a pattern model P with the same update effect as U?
- Given a pattern model *P*, is there an action model U with the same update effect as *P*?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What questions do we want to answer?

- Given an action model U, is there a pattern model P with the same update effect as U?
- Given a pattern model *P*, is there an action model U with the same update effect as *P*?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

By notational abbreviation,

$$\begin{aligned} \bullet \quad [\mathsf{U}]\phi &:= \bigwedge_{\mathsf{e}\in E} [\mathsf{U},\mathsf{e}]\phi \\ \bullet \quad [\mathcal{P}]\phi &:= \bigwedge_{G\in \mathbf{G}} [\mathcal{P},G]\phi \end{aligned}$$

Given an action model U, is there a pattern model ${\mathcal P}$ with the same

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

update effect as U?

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$$\phi_0 = 0_a \wedge 0_b$$

$$\phi_1 = 0_a \wedge 1_b$$

$$\phi_3 = 1_a \wedge 1_b$$

$$\phi_2 = 1_a \wedge 0_b$$

ヘロト 人間 ト 人 ヨト 人 ヨト æ

Observations

Observations

▶ $M^0 \otimes U$ has 36 worlds

• There are just four communication graphs for $A = \{a, b\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Observations

- ▶ $M^0 \otimes \mathsf{U}$ has 36 worlds
- There are just four communication graphs for $A = \{a, b\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $M^0 \odot \mathcal{P}$ has **at most** 16 worlds for any \mathcal{P}

Observations

- $M^0 \otimes \mathsf{U}$ has 36 worlds
- There are just four communication graphs for $A = \{a, b\}$

• $M^0 \odot \mathcal{P}$ has **at most** 16 worlds for any \mathcal{P}

Pattern models are not at least as update expressive as action models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given a pattern model $\mathcal P,$ is there an action model U with the same update effect as $\mathcal P?$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Given a pattern model \mathcal{P} , is there an action model U with the same update effect as \mathcal{P} ?

Given a pattern model \mathcal{P} , is there an action model U with the same update effect as \mathcal{P} ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\blacktriangleright M^0(\odot \mathcal{P}_{two-IIS})^n$$

$$(\bullet): \quad (3, G^{ab^{n-1}}G^{b.a}) \xrightarrow{a} (3, G^{ab^n}) \xrightarrow{b} (3, G^{ab^{n-1}}G^{a.b})$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Let us assume that there is an action model U with the same update effect as $\mathcal{P}_{two-IIS}$

(ロ)、(型)、(E)、(E)、 E) の(()

Let us assume that there is an action model U with the same update effect as $\mathcal{P}_{two-I\!I\!S}$

The modal depth (md) of U is the maximum modal depth of its precondition formulas

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let us assume that there is an action model U with the same update effect as $\mathcal{P}_{two-I\!I\!S}$

The modal depth (md) of U is the maximum modal depth of its precondition formulas

Close worlds become bounded collective bisimilar

Let us assume that there is an action model U with the same update effect as $\mathcal{P}_{two-IIS}$

The modal depth (md) of U is the maximum modal depth of its precondition formulas

- Close worlds become bounded collective bisimilar
- $M^0(\odot \mathcal{P}_{two-IIS})^{\mathbf{n}+1}$ and $M^0(\odot \mathcal{P}_{two-IIS})^{\mathbf{n}} \otimes \mathsf{U}$ are not collectively bisimilar.

Let us assume that there is an action model U with the same update effect as $\mathcal{P}_{two-IIS}$

- The modal depth (md) of U is the maximum modal depth of its precondition formulas
- Close worlds become bounded collective bisimilar
- M⁰(⊙P_{two-IIS})ⁿ⁺¹ and M⁰(⊙P_{two-IIS})ⁿ ⊗ U are not collectively bisimilar.

$$n>\log_3 2(md(\mathsf{U})+1)$$

 $(\cdot, G^{b.a}) \xrightarrow{a} (\cdot, G^{ab}) \xrightarrow{b} (\cdot, G^{a.b}) \xrightarrow{a} (\cdot, G^{a.b}) \xrightarrow{b} (\cdot, G^{a.b}) \xrightarrow{a} (\cdot, G^{b.a}) \xrightarrow{b} (\cdot, G^{b.a}) \xrightarrow{a} (\cdot, G^{a.b}) \xrightarrow{b} (\cdot, G^{a.b}$

 $(\cdot, G^{b,a}) \xrightarrow{a} (\cdot, G^{ab}) \xrightarrow{b} (\cdot, G^{a,b}) \xrightarrow{a} (\cdot, G^{a,b}) \xrightarrow{b} (\cdot, G^{ab}) \xrightarrow{a} (\cdot, G^{b,a}) \xrightarrow{b} (\cdot, G^{b,a}) \xrightarrow{a} (\cdot, G^{ab}) \xrightarrow{b} (\cdot, G^{a,b}) \xrightarrow{b} (\cdot, G^{a,b})$

 $\begin{array}{c} (G^{a.b}, \theta) & (G^{a.b}, \theta) & (G^{b.a}, \theta) \\ \hline \theta & \theta & \theta \\ \hline \theta & \theta & \theta \\ \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $(\cdot, G^{b,a}) \xrightarrow{a} (\cdot, G^{ab}) \xrightarrow{b} (\cdot, G^{a,b}) \xrightarrow{a} (\cdot, G^{a,b}) \xrightarrow{b} (\cdot, G^{ab}) \xrightarrow{a} (\cdot, G^{b,a}) \xrightarrow{b} (\cdot, G^{b,a}) \xrightarrow{a} (\cdot, G^{ab}) \xrightarrow{b} (\cdot, G^{a,b}) \xrightarrow{b} (\cdot, G^{a,b})$

 $\begin{array}{c} (G^{a.b},\!\theta) \hspace{0.1cm} (G^{a.b},\!\theta) \hspace{0.1cm} (G^{b.a},\!\theta) \\ \hline \hspace{0.1cm} \theta \hspace{0.1cm} \bullet \hspace{0.1cm} \theta \\ \hline \hspace{0.1cm} \theta \hspace{0.1cm} \bullet \hspace{0.1cm} \theta \\ \hline \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $(\cdot, G^{b,a}) \xrightarrow{a} (\cdot, G^{ab}) \xrightarrow{b} (\cdot, G^{a,b}) \xrightarrow{a} (\cdot, G^{a,b}) \xrightarrow{b} (\cdot, G^{ab}) \xrightarrow{a} (\cdot, G^{b,a}) \xrightarrow{b} (\cdot, G^{b,a}) \xrightarrow{a} (\cdot, G^{ab}) \xrightarrow{b} (\cdot, G^{a,b}) \xrightarrow{b} (\cdot, G^{a,b})$

 $\overbrace{ \left(\begin{array}{c} G^{a.b}, \theta \right)}^{\left(G^{a.b}, \theta \right)} \overbrace{ \left(\begin{array}{c} G^{b.a}, \theta \right)}^{\left(G^{b.a}, \theta \right)} \\ \overbrace{ \left(\begin{array}{c} \theta \end{array}\right)}^{b} \overbrace{ \left(\begin{array}{c} \theta \end{array}\right)}^{a} \overbrace{ \left(\begin{array}{c} \theta \end{array}\right)}^{a} \\ \hline \theta \end{array} }$

There is a shorter path to the worlds with different labeling above

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $(\cdot, G^{b,a}) \xrightarrow{a} (\cdot, G^{ab}) \xrightarrow{b} (\cdot, G^{a,b}) \xrightarrow{a} (\cdot, G^{a,b}) \xrightarrow{b} (\cdot, G^{ab}) \xrightarrow{a} (\cdot, G^{b,a}) \xrightarrow{b} (\cdot, G^{b,a}) \xrightarrow{a} (\cdot, G^{ab}) \xrightarrow{b} (\cdot, G^{a,b}) \xrightarrow{b} (\cdot, G^{a,b})$

 $\overbrace{ \left(\begin{array}{c} G^{a.b}, \theta \right)}^{\left(G^{a.b}, \theta \right)} \overbrace{ \left(\begin{array}{c} G^{b.a}, \theta \right)}^{\left(G^{b.a}, \theta \right)} \\ \overbrace{ \left(\begin{array}{c} \theta \end{array}\right)}^{b} \overbrace{ \left(\begin{array}{c} \theta \end{array}\right)}^{a} \overbrace{ \left(\begin{array}{c} \theta \end{array}\right)}^{a} \\ \hline \theta \end{array} }$

There is a shorter path to the worlds with different labeling above

Action models are not at least as update expressive as pattern models

Action models and pattern models are incomparable in update expressivity

・ロト ・聞 ト ・ ヨト ・ ヨト

э