
Formal approach in Smart 
Contracts
LANMR 2024 
PCIC - UNAM
René Adrián Dávila Pérez



01
Smart Contracts 
vs Traditional 
Software



Execution

Source: eGov-DAO: a Better Government using 
Blockchain based Decentralized Autonomous 
Organization. 166-171. 
10.1109/ICEDEG.2018.8372356. 



Storage

● Smart Contracts: Blockchain Storage, but 
limited.

● Traditional Software: Server storage, but with 
possibilities for manipulation.

Source: https://storpool.com/overview 



Security

● Smart Contracts: Design errors may cause 
serious issues.

● Traditional Software: Errors can be fixed with 
updates or patches. 

Source: 
https://www.dotmagazine.online/issues/blockcha
in-e-government/blockchain-security/smart-contra
ct-security-expect-and-deal-with-attacks 



● Smart Contracts: Bridges or interoperability 
protocols.

● Traditional Software: API’s, web services, or 
integration protocols.

Interoperability

Source: https://blockgeeks.com/guides/blockchain-oracles/ 



Transparency

● Smart Contracts: Eliminating third parties 
increases trust through compliance with terms.

● Traditional Software: They depend on the owner 
of the software; usually, the code is not freely 
accessible.

Source: 
https://sloboda-studio.com/blog/the-guide-to-smart-contracts-
for-business-owners/ 



Scalability

● Smart Contracts: It is a challenge due to the 
limitations of Blockchain in terms of transaction 
speed and capacity. 

● SW: It is more feasible to add hardware 
resources, optimize code, or use efficient 
architectures, such as microservices or the 
cloud.

Source: https://chain.link/education-hub/smart-contract-platforms 



02
Finite State 
Machines



What is the Smart Contract Formalization process in FSM?

Identification of States

Events and Conditions

Transitions

Identify the different states in which the contract may be 
found.

It specifies how and when one can move from one state to 
another through events and conditions.

Determine the events that caused transitions between states 
and define the conditions under which transitions can be 
made.



1. States
a. Open.
b. Close.
c. End.

2. Events
a. Receive offer.
b. Close auction.
c. End auction.

3. Transitions
a. Open to Closed when event happens Close 

auction.
b. Closed to Ended when event happens End 

Auction.
c. Open to Ended if the auction time expires 

without being closed.

Example: Auction 
System



How do FSMs compare to other formalisms?

Abstraction

Expressiveness

Modeling

They operate at a lower level of abstraction, focusing on 
discrete states and transitions, while logical systems, 
especially first-order logic, operate at a higher, more general 
level, allowing the expression of abstract concepts and 
relationships between objects.

FSMs are useful in systems where behavior can be modeled 
as a finite set of states and transitions. At the same time, 
logic is used in applications where reasoning about abstract 
properties and complex relationships is necessary.

FSMs are limited compared to logical systems. For example, 
they cannot capture concepts such as "for all" or "exists," 
which are fundamental in first-order logic.



03
SC’s Errors 
through Finite 
State Machines



Reentrancy

● An attacker can use a contract's ability to make 
external calls before all its transactions are 
finalized. This allows the vulnerable function to 
be called repeatedly before the original 
execution is complete.

● Example: This was the problem in the DAO hack 
on Ethereum, where attackers drained millions 
of dollars.



● They occur when an arithmetic operation 
results in a value outside the range allowed by 
the data type (for example, exceeding the limit 
of a uint256).

● Example: Variable with a value that causes 
overflow.

Integer 
Overflow/Underflow



Initialization

● Contracts can be deployed without properly 
initializing their variables, which could allow an 
attacker to take control of the contract.

● Example: A misconfigured contract with no 
restrictions on its initialize() function could 
allow any user to execute it and modify the 
state of the contract.



FSM's relationship with DLs

● Finite State Machines (FSM) and description logics (DL) are related in the context of 
systems verification and specification, especially in model-checking theory.

● The connection between both is mainly given by using description logic to describe and 
reason about the properties of finite state machines and the systems they can model.



Relationship of FSM with families of DLs

ALC

ALCO

SHOIQ

A basic descriptive logic that allows describing concepts and 
relationships with logical operators.

It is a more advanced descriptive logic that supports 
transitivity, role hierarchies, cardinalities, and nominals, being 
more suitable for representing complex and detailed 
knowledge structures.

It is a descriptive logic that allows for working basic 
concepts, complements, and nominals.



04
Future Work



Figure. Verification tool template.



Actual term

● Investigate identified errors in Smart Contracts.

● Classify the errors that can be modeled using 
FSMs (Finite State Machines).

● Define consistency in Smart Contracts based on 
FSMs (Finite State Machines).

● Publish the results of the definition and 
classification.



CREDITS: This presentation template was created by Slidesgo, 
including icons by Flaticon, infographics & images by Freepik 

Thank You
photographic_ren@comunidad.unam.mx

+52 5530695535

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/


References

[1] Tesnim Abdellatif & Kei-Léo Brousmiche. «Formal verification of 
smart contracts based on users and blockchain behaviors models». 
Available: IFIP NTMS International Workshop on Blockchains and 
Smart Contracts (BSC). Paris, France, feb. de 2018. url: 
https://hal.science/hal-01760787.
[2] Xiaomin Bai et al. «Formal Modeling and Verification of Smart 
Contracts». Available: Proceedings of the 2018 7th International 
Conference on Software and Computer Applications. ICSCA ’18. 
Kuantan, Malaysia: Association for Computing Machinery, 2018, 
págs. 322-326. isbn: 9781450354141. doi: 10.1145/3185089. 
3185138. url: https://doi.org/10.1145/3185089.3185138.
[3] Anastasia Mavridou et al. «VeriSolid: Correct-by-Design Smart 
Contracts for Ethereum». Available: Financial Cryptography and Data 
Security: 23rd International Conference, FC 2019, Frigate Bay, St. Kitts 
and Nevis, February 18–22, 2019, Revised Selected Papers. St. Kitts, 
Saint Kitts y Nevis: Springer-Verlag, 2019, págs. 446-465. isbn: 
978-3-030-32100-0. doi: 10 . 1007 / 978 - 3 - 030 - 32101 - 7_27. url: 
https://doi.org/10.1007/978-3-030-32101-7_27.

https://hal.science/hal-01760787
https://doi.org/10.1145/3185089.3185138


References

[4] Zeinab Nehai, Pierre-Yves Piriou & Frédéric Daumas. 
«Model-Checking of Smart Contracts». Available: 2018 IEEE 
International Conference on Internet of Things (iThings) and IEEE 
Green Computing and Communications (GreenCom) and IEEE Cyber, 
Physical and Social Computing (CPSCom) and IEEE Smart Data 
(SmartData). 2018, págs. 980-987. doi: 
10.1109/Cybermatics_2018.2018. 00185.
[5] Franz Baader et al. The Description Logic Handbook: Theory, 
Implementation and Applications. 2.a ed. Cambridge University Press, 
2007. doi: 10 . 1017 / CBO9780511711787.
[6] Christel Baier & Joost-Pieter Katoen. Principles of Model Checking 
(Representation and Mind Series). The MIT Press, 2008. isbn: 
026202649.
[7] Yongfeng Huang et al. «Smart Contract Security: A Software 
Lifecycle Perspective». Available: IEEE Access 7 (2019), págs. 
150184-150202. doi: 10.1109/ACCESS.2019.2946988.



References

[8] Anastasia Mavridou & Aron Laszka. «Designing Secure Ethereum 
Smart Contracts: A Finite State Machine Based Approach». Available: 
Financial Cryptography and Data Security. Ed. por Sarah Meiklejohn y 
Kazue Sako. Berlin, Heidelberg:Springer Berlin Heidelberg, 2018, 
págs. 523-540. isbn: 978-3-662-58387-6.
[9] Sebastian Rudolph. «Foundations of description logics». 
Available: Reasoning Web International Summer School. Springer, 
2011, págs. 76-136.


