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‚ The provability logic or GL logic (for Gödel-Löb) is a modal
logic used to investigate (Peano Arithmetic) provability results
in an easy way.

‚ This logic consists in the modal logic K with the additional
axiom

lplA Ñ Aq Ñ lA

called GL axiom or Löb’s axiom which represents Löb’s
theorem.

Theorem (Löb)

Let PRpxq be a proof predicate for PA and let xxy be the numeral

of the number of Gödel of x . For any formula A of PA, if

$PA PRpxAyq Ñ A then $PA A.
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‚ GLS system only has pGLRq as modal rule:

bX ,lB $ B

W ,lX $ lB ,lY ,Z
pGLRq

‚ Its definition is based in Löb’s axiom.

lplA Ñ Aq,lA $ A,lA
pIdAq

A,lplA Ñ Aq,lA $ A
pIdAq

lplA Ñ Aq,lA Ñ A,lA $ A
pÑ Lq

lplA Ñ Aq $ lA
pGLRq

$ lplA Ñ Aq Ñ lA
pÑ Rq
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‚ A transitional proof consists of a traditional proof, a computer
assisted proof and a mapping between both proofs which can
be easily understood by a human and also can be easily
implemented in a proof assistant.

‚ To achieve this, it was necessary to review the proof scripts
and interact with the CAP to follow the reasoning done.

‚ Unfortunately, due to retrocompatibility issues between the
main Coq version and the one used by the authors, we were
not able to interact with the CAP.

‚ Due to this, we opted to construct a new proof based on the
proof sketches presented by the authors and taking additional
guidance from the proof scripts’ comments.
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X $ Y ,A A,X $ Y

X $ Y
pCutq

has been of interest since 1981 when Leivant presented the
first proof attempt.

‚ Unfortunately, two years later Valentini pointed out Leivant’s
proof was incorrect and presented a new one.

‚ Valentini’s proof uses triple induction over the grade, range

and width of a derivation.

‚ The width of a derivation is defined through pGLRq and pCutq
applications, so it is difficult to handle.
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‚ Also according to Moen (2003), Valentini’s argument was
incorrect because it used sets instead of multisets and it did
not work for a multiset sequent calculus.

‚ However, Goré and Ramanayake (2012) pointed out that
Moen’s argument had some gaps and showed that Valentini’s
argument can be applied in a multiset calculus.

‚ Due to these discussions, many authors have tried to get
simpler proofs.

‚ However, most of the alternative proofs have not been
completely accepted.

‚ This lack of acceptance is due to the fact that those proofs are
indirect, use semantic elements or use nonstandard sequent
calculus.
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‚ In 2015 Brighton [1] presented a proof of cut elimination for
GLS1 using set based regressants and regress trees.

‚ A regressant is an expression of the form X P Y , associated to
a sequent X $ Y .

‚ A regression tree is essentially a proof search tree build from
bottom to top.

‚ It also has the particularity that in the rule

X ,lX ,lAi P Ai

W ,lX P lA1, . . . ,lAn,Z
GLR

all the possible diagonal formulas are analyzed in different
regress trees.
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Brighton’s proof

‚ Brighton starts showing that cut elimination and tautology
elimination are equivalent.

‚ By tautology elimination we mean that for any X ,Y ,A if
A Ñ A,X $ Y then X $ Y .

‚ Then he proves tautology elimination for GLS1.

‚ The proof proceeds by induction over the formula A and over
the height of the highest regress tree for X P Y .

‚ It is important to notice that this proof is easier than the older
proofs.
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‚ In 2021 Goré, Ramanayake and Shillito [2] pointed out that
Brighton’s proof has a mistake.

‚ Since Brighton is using sets instead of multisets, implicit
contractions can occur and lead to infinite trees.

‚ They also claim that the “regressants detour” is not necessary,
so they presented a new proof.

‚ This proof was done with the Coq proof assistant.

‚ And with the auxiliary system PSGLS , which has a
terminating proof search and does the regressants’ work.
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The system PSGLS (Proof Search GLS) has the following
additional restrictions:

1. The derivable rule

lA,X $ Y ,lA
pIdBq

is considered as an initial sequent.

2. The conclusion of pGLRq should not be an initial sequent
instance.

These restrictions are introduced to allow us to consider the
maximum height derivation for any sequent s (mhdpsq), by
avoiding infinite proof search.
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(derrec GLS_rules (fun _ => False) (X_0++A :: X_1 , Y_0++Y_1)) ->

(derrec GLS_rules (fun _ => False) (X_0++X_1 , Y_0++Y_1)).

which claims that, if there are proofs (in GLS) for the sequents
X0,X1 $ Y0,A,Y1 and X0,A,X1 $ Y0,Y1 then, there is a
proof (in GLS) for the sequent X0,X1 $ Y0,Y1. So it
translates to:

Theorem

The additive cut rule

X0,X1 $ Y0,A,Y1 X0,A,X1 $ Y0,Y1

X0,X1 $ Y0,X1

pCutq

is admissible in GLS .
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lack of acceptance is due to many factors such as:

‚ The need of a certain level of expertise to read and understand
them.

‚ The lack of a common language between different proof
assistants.

‚ Long proof scripts.

‚ Retrocompatibility issues.

‚ Possible hardware or software errors.

‚ Vacuous truths caused by omissions or errors in the
implementation.

13 / 18



Some questions about CAPs

‚ Can we learn new things by reading a CAP like we do by
reading a traditional proof?

14 / 18



Some questions about CAPs

‚ Can we learn new things by reading a CAP like we do by
reading a traditional proof?

‚ Are CAPs putting aside mathematical creativity in favor of
logical consequence checking?

14 / 18



Some questions about CAPs

‚ Can we learn new things by reading a CAP like we do by
reading a traditional proof?

‚ Are CAPs putting aside mathematical creativity in favor of
logical consequence checking?

‚ If proofs are guarantee plus explanation, do CAPs have the
same status as traditional proofs?

14 / 18



Some questions about CAPs

‚ Can we learn new things by reading a CAP like we do by
reading a traditional proof?

‚ Are CAPs putting aside mathematical creativity in favor of
logical consequence checking?

‚ If proofs are guarantee plus explanation, do CAPs have the
same status as traditional proofs?

‚ Do CAPs need human verification or the proof checker
verification is enough?

14 / 18



Some questions about CAPs

‚ Can we learn new things by reading a CAP like we do by
reading a traditional proof?

‚ Are CAPs putting aside mathematical creativity in favor of
logical consequence checking?

‚ If proofs are guarantee plus explanation, do CAPs have the
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‚ Do CAPs need human verification or the proof checker
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‚ Can we trust in an old CAP that cannot be rechecked?
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Theorem

A sequent X $ Y is provable in PSGLS if and only if it is provable

in GLS .

Lemma

For all X ,Y , if X $ Y ,K has a proof π in GLS , then, X $ Y has

a proof π0 in GLS such that hpπ0q ď hpπq.

Lemma (Admissibility and invertibility)

The rules pIdAq, pWkq, pCtrq are admissible and the rules pÑ Lq,
pÑ Rq are invertible.
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‚ To ease the implementation, they used lists instead of
multisets in their CAP.

‚ We worked directly with multisets.

‚ They proved, by double strong induction over the size of A and
over the mhdpX $ Y q, that:

Theorem

The additive cut rule

d1

X $ Y ,A
r1

d2

A,X $ Y
r2

X $ Y
pCutq

is admissible in GLS .
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‚ We proved the admissibility of cut for PSGLS instead.
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‚ Due to this we considered the cases where r1 and r2 are
instances of pIdBq, which are not necessary in their proof.

‚ We also included all the possible cases for r2 which were
omitted (appealing to the CAP) by them.

‚ Finally we concluded that cut is admissible in GLS as a
corollary.

‚ We could conclude this because we already proved that pCutq
is admissible in PSGLS and the proof for the equivalence
between GLS and PSGLS did not use the pCutq rule.
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‚ We gave a fully detailed traditional proof for GLS cut
elimination based in the CAP given by Goré et. al.

‚ Our (traditional) proof provides guarantee and explanation.

‚ Our proof shows the creativity behind the CAP.

‚ Our proof shows the innovative techniques used in the CAP in
a human readable way.

‚ This shows that, in this case, the CAP can be trusted from the
traditional point of view.
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Thank you!

18 / 18


