
Verification of Smart
Contracts Based on
Natural Language with
Description Logic

LANMR 2024

Gabriel Alejandro May Lozano

Ismael Everardo Bárcenas Patiño

I N T R O D U C T I O N

• Blockchain technology has transformed the way we manage and

record transactions by offering a decentralized and immutable

system

• This technology ensures the integrity and transparency of

operations by eliminating the need for intermediaries and recording

each transaction in a way that cannot be altered.

Difference with tradicional systems

By rejolut.com

Smart Contracts

• Computer programas that are executing
with the terms of the agreement between
the contracting parties written into its
lines of code

• Features
• Self-Executing
• Immutable
• Transparent & Decentralized
• Programmable
• Interoperability

Applications
of SC

By 2muchcoffee.com

Challenges &
Issues of Smart
Contracts

Code Vulnerabilities

Immutability

Complexity

Legal and Regulatory Uncertainty

Security Risks

Interoperability with other platforms

Gas Costs

Testing and Validation

Related Work

• Different tools and perspectives have been
implemented to achieve the design and
construction of smart contracts that provide
security and confidence in their security

• Formal methods have been fundamental in
providing a rigorous framework for
mathematical validation, ensuring the
correctness and security of the code and its
operation

• The integration of artificial intelligence (AI) has
managed to automate the detection of
vulnerabilities and errors, improving efficiency
in the review

P R E V I O U S W O R K S O F
S M A R T C O N T R A C T
W I T H
F M & A I

FM AI

Amani et al.: Formal
verification of Solidity smart
contracts

Momeni et al.: Machine

learning model that detects

patterns of security

vulnerabilities in smart

contracts

Abdellatif et al.: Verify SC with

a statical model checking

approach.

Shakya et al.: Features

extraction in Solidity SC

Nam et al.: Verification of SC

with ATL.

Tang et al. LightingCat model

to identify malicious code

New approach

• The implementation of natural
language processing models has
resulted in promising tools to analyze
and generate contracts, facilitating
understanding and validation

• These advances represent the
convergence of traditional techniques
and emerging technologies to achieve
more robust and accurate verification

By industrywired.com

Natural Language Processing (NLP)

• NLP is a field of AI focused on the interaction between
computers and human language, enabling machines to
understand, interpret, and generate human language

• Nowadays, they have focused on the development of
Large Language Models (LLM)

• Companies use it for several automated tasks, such as to:
• Process, analyze, and archive large documents
• Analyze customer feedback or call center recordings
• Classify and extract text
• Text generation
• Chatbots and Virtual Assistants

Related Work with NLP

• Karanjai et al.: Works of generation of SC with
ChatGPT and Google PaLM2

• Soud et al.: Automated prediction system and
prioritization of vulnerabilities in smart contracts

• Nelaturu et al.: Framework of verification for
Move SC

NLP reasoning problem

• While large language models (LLMs)
appear to be robust and general,
their reasoning ability is not at a
level to understanding natural
language reasoning problems

• However, Yang et al. observed that
a large LLM can serve as a highly
effective few-shot semantic parser.

• They presents [LLM] +ASP

Smart
contract

feedback

Formal verification of smart
contracts is a critical and essential
process to ensure their integrity

Necessary to build smart contracts
with specific formats

Analysis of the logic that defines
their characterization

Our motivation

O B J E T I V E S

• General:

Develop a verification system of smart contract by
implementing large language models and description
logics

• Specifics:

• Develop a natural language-based interface to specify
smart contracts in terms of descriptive logicsDevelop

• Implement a verification module of smart contract
based on descriptive logics

Tools: LLM’s
• NLP models that are trained on vast

amounts of text data from diverse sources
to learn language patterns, context, and
knowledge

• Implement a LLM would allow:
• Parsing descriptions of a smart

contract in natural language into a
formal format interpretable by logical
systems

• Identifying the rules and conditions
described in the input provided
through an interactive user interface.

Tools: Description Logics (DL)

• Description Logic is a type of formal
logical language that allows to
represent and reason about
knowledge representations

• The implementation of DLs aims to:
• Model the properties of the smart

contract by representing them in
ontologies (OWL)

• Provide a format for the
application of deduction
techniques for their subsequent
verification

Tools: Automated
reasoner
• Automated reasoners are software

systems designed to make logical
inferences and deduce new
conclusions from prior knowledge.

• Some examples of reasoners are:
• FaCT++
• HermiT
• Pellet
• Others

A P P R O A C H O F O U R P R O P O S A L

USTED ENTERS THE
DESCRIPTION OF THE SMART
CONTRACT TO BE VERIFIED
THROUGH THE NATURAL

LANGUAGE-BASED INTERFACE.

THE DESCRIPTION IS TAKEN AS
INPUT TO THE LLM TO

GENERATE SMART CONTRACTS
IN TERMS OF DESCRIPTION

LOGICS (OWL)

THE GENERATED SMART
CONTRACT IS TAKEN AS INPUT
TO AN AUTOMATED REASONER

TO PERFORM VERIFICATION.

THE REASONER PROVIDES AS
OUTPUT THE RESULTS OF THE

CONSISTENCY AND
FUNCTIONALITY OF THE

DESCRIBED SMART CONTRACT

U S E R I N P U T

In-Context
Learning
Prompt

"A smart contract is designed to
facilitate the buying and selling of an
item. Users can list an item for sale
by sending item details and a price
to the contract. Buyers can purchase
the item by sending the appropriate
amount to the contract. When a
buyer sends the correct amount, the
contract transfers ownership of the
item from the seller to the buyer and
transfers the funds to the seller.
Users can check the status of the
item, including its price and the
current seller."

L
O

G
IC

 L
A

N
G

U
A

G
E

 O
F

 S
C

1. **Classes:**
• `User`
• `Item`
• `Sale`
• `Buyer`
• `Seller`

2. **Object Properties:**
• `sell` (from `Seller` to `Item`)
• `buy` (from `Buyer` to `Item`)
• `associatedWith` (from `Item` to `Seller`)
• `transfersOwnership` (from `Item` to `Buyer`)
• `receivesFunds` (from `Seller` to `Sale`

3. **Data Properties:**
• `price` (from `Item` to a numeric value)
• `details` (from `Item` to a descriptive text)
• `amountPaid` (from `Sale` to a numeric value)
• `transactionDate` (from `Sale` to a date

4. **Restrictions:**
• An `Item` must have a `price` and `details` before it is

listed for sale.
• A `Buyer` must send the exact amount to purchase an

`Item`.
• The contract must transfer ownership of the `Item`

from the `Seller` to the `Buyer` and transfer funds
from the `Buyer` to the `Seller`.

• The status of an `Item` must include its `price` and
the current `Seller`.

Pipeline of our proposal

Example 1: Auction
• A smart contract is designed that manages an auction in which users can

make bids to acquire an item. The bidding process works as follows:
• Making a Bid
• Manager Previous Bids
• Highest Bidder Query

• The contract ensures that there is always a single highest bidder and a
single highest bid at any given time. Additionally, it handles refunding of
previous bids correctly to prevent funds from being lost.

L O G I C F O R M A T O F
A U C T I O N

• Classes:

User

Bid

Item

Auction

Bidder

• Object Properties:

makesBid (User to Bid)

hasBid (Bid to Item)

isGreaterThan (Bid to Bid)

returnsFunds (Bid to User)

queryBidder (User to Bidder)

• Data Properties:

amount (Bid to a numeric value)

status (Bid to a validity state, e.g. valid or invalid)

date (Bid to a date)

• Restrictions:

A Bid must have an amount that is strictly greater than the current highest bid (isGreaterThan).

A User cannot make a bid if they are already the highest bidder (isBidder)

When a User makes a valid bid and becomes the new highest bidder, the contract must return
the funds from the previous bid to the User who was the previous highest bidder (returnsFunds).

Any User may query who the highest bidder is at any time (queryBidder)

The Auction must ensure that there is always a single highest bidder and a single highest offer at
any given time (isBidder and isHigherThan).

E X A M P L E 2 : L I F E I N S U R A N C E

A smart contract is designed that manages life insurance and handles the
associated payments and validations as follows:

• Purchasing Insurance
• Insurance Claims
• Claim Validation
• Insurance Status Check

The contract ensures that only valid payments are made and ensures that
funds are handled correctly to cover claims without leaving room for error

F O R M A L F O R M A T
O F I N S U R A N C E

L O G I C

• Classes:

User

Policy

Insurance

Claim

Beneficiary

Insured

• Object Properties:

buyPolicy (User to Policy)

isInsured (User to Insured)

makesClaim (Insured to Claim)

designatesBeneficiary (Insured to Beneficiary)

pays (Insurance to Beneficiary)

verifiesClaim (Claim to Insurance)

queriesStatus (User to Insurance)

• Data Properties:

paymentAmount (Policy to a numeric value)

status (Policy to a status of validity)

insuredAmount (Insurance to a numeric value)

purchaseDate (Policy to a date)

claimDate (Claim to a date)

claimAmount (Claim to a numeric value)

• Restrictions:

A User You must send a fixed amount of funds to purchase an Insurance Policy, which registers the User as an Insured (buyPolicy and beInsured).

The contract must maintain an adequate balance for the payment of future claims (InsuredAmount).

Only an active Insured can make a Claim, and the Claim must be externally verified to be valid (makeClaim and verifyClaim).

The contract must pay the insured amount to the designated Beneficiary only if the Claim is valid and the Insured was active at the time of the Claim

(pays).

Any User can check the status of their Policy, including whether they are insured and the total insured amount (checkStatus).

Vision

• System for transforming natural language
inputs into logical language

• Formal verification of Smart Contracts with
Description Logics

• Provides access to Smart Contract design
for less experienced users

Info
• Presenter: BCS Gabriel Alejandro May Lozano

• Tutor: PhD. Ismael Everardo Barcenas Patiño

• Postgraduate Program in Computer Science and Engineering

Thank you! ☺

	Diapositiva 1: Verification of Smart Contracts Based on Natural Language with Description Logic
	Diapositiva 2: Introduction
	Diapositiva 3: Difference with tradicional systems
	Diapositiva 4: Smart Contracts
	Diapositiva 5: Applications of SC
	Diapositiva 6: Challenges & Issues of Smart Contracts
	Diapositiva 7: Related Work
	Diapositiva 8: Previous Works of Smart Contract with FM & AI
	Diapositiva 9: New approach
	Diapositiva 10: Natural Language Processing (NLP)
	Diapositiva 11: Related Work with NLP
	Diapositiva 12: NLP reasoning problem
	Diapositiva 13: Smart contract feedback
	Diapositiva 14: Our motivation
	Diapositiva 15: Objetives
	Diapositiva 16: Tools: LLM’s
	Diapositiva 17: Tools: Description Logics (DL)
	Diapositiva 18: Tools: Automated reasoner
	Diapositiva 19: Approach of our proposal
	Diapositiva 20: User input
	Diapositiva 21: Logic language of SC
	Diapositiva 22: Pipeline of our proposal
	Diapositiva 23: Example 1: Auction
	Diapositiva 24: Logic format of auction
	Diapositiva 25: EXample 2: Life insurance
	Diapositiva 26: Formal format of insurance Logic
	Diapositiva 27: Vision
	Diapositiva 28: Info
	Diapositiva 29: Thank you!

